3.614 \(\int \frac {(c x)^{5/2}}{\sqrt {a+b x^2}} \, dx\)

Optimal. Leaf size=273 \[ -\frac {3 a^{5/4} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right ),\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}+\frac {6 a^{5/4} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}-\frac {6 a c^2 \sqrt {c x} \sqrt {a+b x^2}}{5 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b} \]

[Out]

2/5*c*(c*x)^(3/2)*(b*x^2+a)^(1/2)/b-6/5*a*c^2*(c*x)^(1/2)*(b*x^2+a)^(1/2)/b^(3/2)/(a^(1/2)+x*b^(1/2))+6/5*a^(5
/4)*c^(5/2)*(cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1
/4)/c^(1/2)))*EllipticE(sin(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((
b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^2+a)^(1/2)-3/5*a^(5/4)*c^(5/2)*(cos(2*arctan(b^(1/4)*(c*x)^
(1/2)/a^(1/4)/c^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))*EllipticF(sin(2*arctan(b^(
1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^
(7/4)/(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 273, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {321, 329, 305, 220, 1196} \[ -\frac {3 a^{5/4} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}+\frac {6 a^{5/4} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}-\frac {6 a c^2 \sqrt {c x} \sqrt {a+b x^2}}{5 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b} \]

Antiderivative was successfully verified.

[In]

Int[(c*x)^(5/2)/Sqrt[a + b*x^2],x]

[Out]

(2*c*(c*x)^(3/2)*Sqrt[a + b*x^2])/(5*b) - (6*a*c^2*Sqrt[c*x]*Sqrt[a + b*x^2])/(5*b^(3/2)*(Sqrt[a] + Sqrt[b]*x)
) + (6*a^(5/4)*c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(
1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(5*b^(7/4)*Sqrt[a + b*x^2]) - (3*a^(5/4)*c^(5/2)*(Sqrt[a] + Sqrt[b]*
x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/
(5*b^(7/4)*Sqrt[a + b*x^2])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {(c x)^{5/2}}{\sqrt {a+b x^2}} \, dx &=\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {\left (3 a c^2\right ) \int \frac {\sqrt {c x}}{\sqrt {a+b x^2}} \, dx}{5 b}\\ &=\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {(6 a c) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{5 b}\\ &=\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {\left (6 a^{3/2} c^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{5 b^{3/2}}+\frac {\left (6 a^{3/2} c^2\right ) \operatorname {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a} c}}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{5 b^{3/2}}\\ &=\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {6 a c^2 \sqrt {c x} \sqrt {a+b x^2}}{5 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {6 a^{5/4} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}-\frac {3 a^{5/4} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 69, normalized size = 0.25 \[ \frac {2 c (c x)^{3/2} \left (-a \sqrt {\frac {b x^2}{a}+1} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {b x^2}{a}\right )+a+b x^2\right )}{5 b \sqrt {a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(5/2)/Sqrt[a + b*x^2],x]

[Out]

(2*c*(c*x)^(3/2)*(a + b*x^2 - a*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((b*x^2)/a)]))/(5*b*Sqrt
[a + b*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.98, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x} c^{2} x^{2}}{\sqrt {b x^{2} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x)*c^2*x^2/sqrt(b*x^2 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c x\right )^{\frac {5}{2}}}{\sqrt {b x^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((c*x)^(5/2)/sqrt(b*x^2 + a), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 210, normalized size = 0.77 \[ -\frac {\sqrt {c x}\, \left (-2 b^{2} x^{4}-2 a b \,x^{2}+6 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, a^{2} \EllipticE \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, a^{2} \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )\right ) c^{2}}{5 \sqrt {b \,x^{2}+a}\, b^{2} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(5/2)/(b*x^2+a)^(1/2),x)

[Out]

-1/5*c^2/x*(c*x)^(1/2)/(b*x^2+a)^(1/2)/b^2*(6*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1
/2))/(-a*b)^(1/2))^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(
1/2))*a^2-3*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-1/(-a*b
)^(1/2)*b*x)^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a^2-2*b^2*x^4-2*a*b*x^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c x\right )^{\frac {5}{2}}}{\sqrt {b x^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((c*x)^(5/2)/sqrt(b*x^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,x\right )}^{5/2}}{\sqrt {b\,x^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(5/2)/(a + b*x^2)^(1/2),x)

[Out]

int((c*x)^(5/2)/(a + b*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [C]  time = 6.83, size = 44, normalized size = 0.16 \[ \frac {c^{\frac {5}{2}} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} \Gamma \left (\frac {11}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(5/2)/(b*x**2+a)**(1/2),x)

[Out]

c**(5/2)*x**(7/2)*gamma(7/4)*hyper((1/2, 7/4), (11/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(11/4))

________________________________________________________________________________________